Estimating spatially distributed monthly evapotranspiration rates by linear transformations of MODIS daytime land surface temperature data

نویسنده

  • J. Szilagyi
چکیده

Under simplifying conditions catchment-scale vapor pressure at the drying land surface can be calculated as a function of its watershed-representative temperature () by the wet-surface equation (WSE, similar to the wet-bulb equation in meteorology for calculating the dry-bulb thermometer vapor pressure) of the Complementary Relationship of evaporation. The corresponding watershed ET rate, , is obtained from the Bowen ratio with the help of air temperature, humidity and percent possible sunshine data. The resulting (,) pair together with the wet-environment surface temperature () and ET rate (ETw), obtained by the Priestley-Taylor equation, define a linear transformation on a monthly basis by which spatially distributed ET rates can be estimated as a sole function of MODIS daytime land surface temperature, Ts , values within the watershed. The linear transformation preserves the mean which is highly desirable. , in the lack of significant open water surfaces within the study watershed (Elkhorn, Nebraska), was obtained as the mean of the smallest MODIS Ts values each month. The resulting period-averaged (2000– 2007) catchment-scale ET rate of 624 mm/yr is very close to the water-balance derived ET rate of about 617 mm/yr. The latter is a somewhat uncertain value due to the effects of (a) observed groundwater depletion of about 1m over the study period caused by extensive irrigation, and; (b) the uncertain rate of net regional groundwater supply toward the watershed. The spatially distributed ET rates correspond well with soil/aquifer properties and the resulting land use type (i.e. rangeland versus center-pivot irrigated crops). Correspondence to: J. Szilagyi ([email protected])

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Complementary-relationship-based evapotranspiration mapping (cremap) technique for Hungary

Monthly areal evapotranspiration (ET) rates for 2000–2008 are mapped for Hungary at a spatial scale of about 1-km with the help of MODIS daytime land surface temperature as well as sunshine duration, air temperature and humidity data. Mapping is achieved by a linear transformation of the MODIS daytime land surface temperature values employing the complementary relationship of evaporation. Valid...

متن کامل

Application of MODIS-Based Monthly Evapotranspiration Rates in Runoff Modeling: A Case Study in Nebraska, USA

Daily and monthly flow-rates of the Little Nemaha River in Nebraska were simulated by the lumped-parameter Jakeman-Hornberger as well as a distributed-parameter water-balance accounting procedure for the 2003-2008 and 20002009 periods, respectively, with and without the help of the MODIS-based monthly estimates of evapotranspiration (ET) rates. While the daily lumped-parameter model simulation ...

متن کامل

Mapping mean annual groundwater recharge in the Nebraska Sand Hills, USA

Mean annual recharge in the Sand Hills of Nebraska (USA) over the 2000–2009 period was estimated at a 1-km spatial resolution as the difference of mean annual precipitation (P) and evapotranspiration (ET). Monthly P values came from the PRISM dataset, while monthly ET values were derived from linear transformations of the MODIS daytime land-surface temperature values into pixel ET rates with th...

متن کامل

Testing the Rationale behind an Assumed Linear Relationship between Evapotranspiration and Land Surface Temperature

Theoretical considerations and empirical evidence indicate a linear relationship between the land surface temperature (Ts) and the corresponding evapotranspiration (ET) rate under spatially constant wind and net energy conditions at a homogeneous vegetated surface. Such a relationship lies at the core of the popular surface energy balance algorithm (SEBAL); the satellite-based energy balance ap...

متن کامل

Comparison of land surface temperature (LST) modeled with a spatially-distributed solar radiation model (SRAD) and remote sensing data

The solar radiation model SRAD was applied to a Mediterranean mountainous environment in southern California for estimating land surface temperature (LST). The simulated SRAD LST results were compared with highand meso-resolution satellite-based LST data at daily, monthly and annual temporal scales to identify potential ways of improving the LST accuracy in either the SRAD or satellite-based ap...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009